
Politecnico di Torino
III Facoltà di Ingegneria

Design of an ASIP with TCE
Integrated Systems Architectures

Master degree in Electronic Engineering

Group: 02

Alessi Valeria 198141
Renzi Alessandro 197783
Tiralongo Antonio 200021

February 5, 2014

Contents

1 Introduction 1

2 Starting Point Architecture 2

3 Algorithm Acceleration 5

4 Creating the Custom Operations 11

5 Custom operations in C code 14

6 Functional Unit implementation 19

7 Generating the processor 22

8 Logic Synthesis 23
8.1 Timing . 24
8.2 Area . 25
8.3 Power . 26

9 Place and route 28

A 34

i

CHAPTER 1

Introduction

A transport triggered architecture (TTA) is a kind of CPU design in which programs
directly control the internal transport buses of a processor. Computation happens as
a side effect of data transports: writing data into a triggering port of a functional
unit triggers the functional unit to start a computation. Due to its modular structure,
TTA is an ideal processor template for Application Specific Instruction-set Processors
(ASIP) with customized datapath, but without the inflexibility and design cost of fixed
function hardware accelerators.
Typically a transport triggered processor has multiple transport buses and multiple
functional units connected to the buses, which provides opportunities for instruction
level parallelism. This is why the TTA architecture resembles the Very Long Instruction
Word (VLIW) architecture. A TTA instruction word is composed of multiple slots,
one slot per bus, and each slot determines the data transport that takes place on the
corresponding bus.
The goal of this lab is to design with TCE an Application Specific Instruction-set
Processor (ASIP) to compute the Discrete Cosine Transform (DCT).

1

CHAPTER 2

Starting Point Architecture

The initial architecture is composed of:

• One BUS

• One ALU

• One LSU

• One RF

• One BOOL RF

The initial benchmark of the DCT algorithm execution on this architecture (performed
using Proxim) reported the following data:

cycles: 21299

buses:

B1 79.9052% (17019 writes)

sockets:

lsu_i1 14.4796% (3084 writes)
lsu_o1 9.43706% (2010 writes)
lsu_i2 5.04249% (1074 writes)
RF_i1 10.5404% (2245 writes)
RF_o1 23.48% (5001 writes)
bool_i1 1.49303% (318 writes)
gcu_i1 1.64796% (351 writes)
gcu_i2 0.0751209% (16 writes)
gcu_o1 0.154937% (33 writes)

2

Integrated Systems Architectures 3

ALU_i1 23.311% (4965 writes)
ALU_i2 23.3156% (4966 writes)
ALU_o1 24.8134% (5285 writes)

operations executed in function units:

LSU:
LDW 65.1751% of FU total (2010 executions)
STW 34.8249% of FU total (1074 executions)
TOTAL 14.4796% (3084 triggers)

ALU:
ADD 55.5086% of FU total (2756 executions)
AND 6.10272% of FU total (303 executions)
EQ 6.40483% of FU total (318 executions)
SHL 12.3666% of FU total (614 executions)
SHR 6.40483% of FU total (318 executions)
SHRU 6.10272% of FU total (303 executions)
SUB 1.00705% of FU total (50 executions)
XOR 6.10272% of FU total (303 executions)
TOTAL 23.311% (4965 triggers)

gcu:
JUMP 95.1567% of FU total (334 executions)
CALL 4.8433% of FU total (17 executions)
TOTAL 1.64796% (351 triggers)

operations:

ADD 12.9396% (2756 executions)
AND 1.4226% (303 executions)
CALL 0.079816% (17 executions)
EQ 1.49303% (318 executions)
JUMP 1.56815% (334 executions)
LDW 9.43706% (2010 executions)
SHL 2.88276% (614 executions)
SHR 1.49303% (318 executions)
SHRU 1.4226% (303 executions)
STW 5.04249% (1074 executions)
SUB 0.234753% (50 executions)
XOR 1.4226% (303 executions)

Integrated Systems Architectures 4

FU port guard accesses:

register accesses:

RF:
0 3104 reads, 0 guard reads, 66 writes
1 60 reads, 0 guard reads, 46 writes
2 403 reads, 0 guard reads, 706 writes
3 1007 reads, 0 guard reads, 1000 writes
4 427 reads, 0 guard reads, 427 writes
TOTAL 5 registers used

BOOL:
0 0 reads, 1152 guard reads, 318 writes
TOTAL 1 registers used

As we can see from the profiling information, there are a lot of transactions on the
system bus, the majority of which are between the ALU and the register file. So a
first attempt to improve the performances was to add a system bus and three more
registers in the register file.

CHAPTER 3

Algorithm Acceleration

The proposed modifications lead to the following performances:

cycles: 5303

buses:

B1 61.7198% (3273 writes)
B2 96.1908% (5101 writes)

sockets:

lsu_i1 4.69546% (249 writes)
lsu_o1 2.82859% (150 writes)
lsu_i2 1.86687% (99 writes)
RF_i1 35.2065% (1867 writes)
RF_o1 56.3832% (2990 writes)
bool_i1 5.99661% (318 writes)
gcu_i1 6.61889% (351 writes)
gcu_i2 0.301716% (16 writes)
gcu_o1 0.622289% (33 writes)
ALU_i1 51.6123% (2737 writes)
ALU_i2 51.6123% (2737 writes)
ALU_o1 51.6689% (2740 writes)

operations executed in function units:

LSU:
LDW 60.241% of FU total (150 executions)
STW 39.759% of FU total (99 executions)
TOTAL 4.69546% (249 triggers)

5

Integrated Systems Architectures 6

ALU:
ADD 19.8027% of FU total (542 executions)
AND 11.0705% of FU total (303 executions)
EQ 11.6186% of FU total (318 executions)
SHL 22.4333% of FU total (614 executions)
SHR 11.6186% of FU total (318 executions)
SHRU 11.0705% of FU total (303 executions)
SUB 1.31531% of FU total (36 executions)
XOR 11.0705% of FU total (303 executions)
TOTAL 51.6123% (2737 triggers)

gcu:
JUMP 95.1567% of FU total (334 executions)
CALL 4.8433% of FU total (17 executions)
TOTAL 6.61889% (351 triggers)

operations:

ADD 10.2206% (542 executions)
AND 5.71375% (303 executions)
CALL 0.320573% (17 executions)
EQ 5.99661% (318 executions)
JUMP 6.29832% (334 executions)
LDW 2.82859% (150 executions)
SHL 11.5784% (614 executions)
SHR 5.99661% (318 executions)
SHRU 5.71375% (303 executions)
STW 1.86687% (99 executions)
SUB 0.678861% (36 executions)
XOR 5.71375% (303 executions)

FU port guard accesses:

register accesses:

RF:
0 251 reads, 0 guard reads, 35 writes
1 45 reads, 0 guard reads, 46 writes
2 67 reads, 0 guard reads, 67 writes
3 963 reads, 0 guard reads, 347 writes
4 640 reads, 0 guard reads, 352 writes
5 361 reads, 0 guard reads, 359 writes

Integrated Systems Architectures 7

6 632 reads, 0 guard reads, 631 writes
7 31 reads, 0 guard reads, 30 writes
TOTAL 8 registers used

BOOL:
0 0 reads, 288 guard reads, 318 writes
TOTAL 1 registers used

The speedup from the starting architecture is 400%. The second bus implies a
more efficient transfer between the ALU and the register file, while the added register
contributes to lower the transfers from and to the memory. Due to the different archi-
tecture, the usage percentage of the different functional units is now biased toward the
ALU, in fact at this time it manages half of the operations executed on the processor.
In particular there are a lot of additions and shifts, that are the core computation of
the DCT algorithm. So it seems to be straightforward to add a second ALU which
implements these two operations in parallel to the first.
The benchmark result is the following:

cycles: 4970

buses:

B1 72.7968% (3618 writes)
B2 95.5533% (4749 writes)

sockets:

lsu_i1 5.01006% (249 writes)
lsu_o1 3.01811% (150 writes)
lsu_i2 1.99195% (99 writes)
RF_i1 37.4245% (1860 writes)
RF_o1 60.0201% (2983 writes)
bool_i1 6.39839% (318 writes)
gcu_i1 7.06237% (351 writes)
gcu_i2 0.321932% (16 writes)
gcu_o1 0.663984% (33 writes)
ALU_i1 32.2535% (1603 writes)
ALU_i2 32.2535% (1603 writes)
ALU_o1 32.2938% (1605 writes)
ALU2_i1 22.8169% (1134 writes)
ALU2_i2 22.8169% (1134 writes)
ALU2_o 22.837% (1135 writes)

Integrated Systems Architectures 8

operations executed in function units:

LSU:
LDW 60.241% of FU total (150 executions)
STW 39.759% of FU total (99 executions)
TOTAL 5.01006% (249 triggers)

ALU:
ADD 1.24766% of FU total (20 executions)
AND 18.9021% of FU total (303 executions)
EQ 19.8378% of FU total (318 executions)
SHL 0.124766% of FU total (2 executions)
SHR 19.8378% of FU total (318 executions)
SHRU 18.9021% of FU total (303 executions)
SUB 2.24579% of FU total (36 executions)
XOR 18.9021% of FU total (303 executions)
TOTAL 32.2535% (1603 triggers)

ALU2:
ADD 46.0317% of FU total (522 executions)
SHL 53.9683% of FU total (612 executions)
TOTAL 22.8169% (1134 triggers)

gcu:
JUMP 95.1567% of FU total (334 executions)
CALL 4.8433% of FU total (17 executions)
TOTAL 7.06237% (351 triggers)

operations:

ADD 10.9054% (542 executions)
AND 6.09658% (303 executions)
CALL 0.342052% (17 executions)
EQ 6.39839% (318 executions)
JUMP 6.72032% (334 executions)
LDW 3.01811% (150 executions)
SHL 12.3541% (614 executions)
SHR 6.39839% (318 executions)
SHRU 6.09658% (303 executions)
STW 1.99195% (99 executions)
SUB 0.724346% (36 executions)
XOR 6.09658% (303 executions)

Integrated Systems Architectures 9

FU port guard accesses:

register accesses:

RF:
0 251 reads, 0 guard reads, 35 writes
1 45 reads, 0 guard reads, 46 writes
2 69 reads, 0 guard reads, 69 writes
3 964 reads, 0 guard reads, 348 writes
4 637 reads, 0 guard reads, 349 writes
5 356 reads, 0 guard reads, 353 writes
6 631 reads, 0 guard reads, 631 writes
7 30 reads, 0 guard reads, 29 writes
TOTAL 8 registers used

BOOL:
0 0 reads, 1440 guard reads, 318 writes
TOTAL 1 registers used

This time the speedup with respect to the previous version is only 1%. The ex-
planation has to be searched into the DCT algorithm. If we analyze the code, we find
that in the sequence of calls to the lift operations there are a lot of data dependencies:

/// \pi/8 lifting steps
ytmp1 = x[6];
ytmp2 = x[5];
ytmp1 = lift_pi8_1(ytmp1, ytmp2);
ytmp2 = lift_pi8_2(ytmp1, ytmp2);
ytmp1 = lift_pi8_1(ytmp1, ytmp2);
y[2] = ytmp1;
y[6] = ytmp2;

/// \pi/8 lifting steps
/// \pi/16 lifting steps
/// 3\pi/16 lifting steps
ytmp1 = x[4];
ytmp2 = x[2];
ytmp1 = lift_pi8_1(ytmp1, ytmp2);
ytmp2 = lift_pi8_2(ytmp1, ytmp2);
ytmp1 = lift_pi8_1(ytmp1, ytmp2);

ytmp3 = x[7];

Integrated Systems Architectures 10

ytmp4 = x[1];
ytmp3 = lift_pi8_1(ytmp3, ytmp4);
ytmp4 = lift_pi8_2(ytmp3, ytmp4);
ytmp3 = lift_pi8_1(ytmp3, ytmp4);

ytmp1 = lift_pi16_1(ytmp1, ytmp4);
ytmp4 = lift_pi16_2(ytmp1, ytmp4);
ytmp1 = lift_pi16_1(ytmp1, ytmp4);

ytmp2 = lift_3pi16_1(ytmp2, ytmp3);
ytmp3 = lift_3pi16_2(ytmp2, ytmp3);
ytmp2 = lift_3pi16_1(ytmp2, ytmp3);

This data dependency between two calls prevents to exploit the improved paral-
lelism of the architecture, therefore it is useless to add more functional units, since
the code would be in any case unable to exploit them. So the best option to further
improve the performances is to implement in hardware the lifting operations in order
to reduce the time needed for their execution. The question now is: is it possible or
convenient?

CHAPTER 4

Creating the Custom Operations

Looking at the lifting operations implementation we can see that they are very
similar to each other. There is always a multiplication by a constant, a shift by eight,
and an addition or a subtraction. It is very likely that the large number of additions
found in the benchmarks are caused by these multiplications, so it should be useful
to add an hardware multiplier in order to execute the multiplications in a few clock
cycles, instead of an expensive software loop. Moreover, since a constant hardware
shift comes barely for free it seems to be another good way to speedup the functions.
Now we have to check if these hypothesis are true; to do so we must simulate again
the execution, but this time adding the behavior of the new module, in charge of
implementing the lifting operations. This is done introducing a new module in the
architecture with the tool OSEd (Operation Set Editor), then we add to this module
all the operations we want to simulate. These operations will become part of the
instruction set of the ASIP.
Once the new instructions have been added, we have to define their simulation behavior.
The simulation behavior is specified in C language, supported by a specific library
(OSAL.hh). The behavior for the instructions is the following:

/**
* OSAL behavior definition file.
*/

#include "OSAL.hh"

OPERATION(LIFT_PI8_1)
TRIGGER
int x1 = INT(1);
int x2 = INT(2);
int result = 0;

11

Integrated Systems Architectures 12

result = x1 + ((x2*51) >> 8);

IO(3) = result;

END_TRIGGER
END_OPERATION(LIFT_PI8_1)

OPERATION(LIFT_PI8_2)
TRIGGER
int x1 = INT(1);
int x2 = INT(2);
int result = 0;

result = x2 - ((x1*98) >> 8);

IO(3) = result;

END_TRIGGER
END_OPERATION(LIFT_PI8_2)

OPERATION(LIFT_PI16_1)
TRIGGER
int x1 = INT(1);
int x2 = INT(2);
int result = 0;

result = x1 + ((x2*25) >> 8);

IO(3) = result;

END_TRIGGER
END_OPERATION(LIFT_PI16_1)

OPERATION(LIFT_PI16_2)
TRIGGER
int x1 = INT(1);
int x2 = INT(2);
int result = 0;

result = x2 - ((x1*50) >> 8);

Integrated Systems Architectures 13

IO(3) = result;

END_TRIGGER
END_OPERATION(LIFT_PI16_2)

OPERATION(LIFT_3PI16_1)
TRIGGER
int x1 = INT(1);
int x2 = INT(2);
int result = 0;

result = x1 + ((x2*78) >> 8);

IO(3) = result;

END_TRIGGER
END_OPERATION(LIFT_3PI16_1)

OPERATION(LIFT_3PI16_2)
TRIGGER
int x1 = INT(1);
int x2 = INT(2);
int result = 0;

result = x2 - ((x1*142) >> 8);

IO(3) = result;

END_TRIGGER
END_OPERATION(LIFT_3PI16_2)

Within this step we also have to specify a latency for the new instructions, but
since we have not yet synthesized the processor we don’t know it at the moment, so
we can only make a raw estimation of this latency. For now we can take three clock
cycles as a reasonable latency.
Then we compile the behavior into a plugin module that the simulator can call whenever
one of these instructions has to be executed. Once the behavior has been compiled,
the module has to be added to the architecture as a functional unit and connected to
the buses. This is done using ProDe (Processor Design) tool.

CHAPTER 5

Custom operations in C code

In order to force the code to use the custom instruction, instead of the traditional
assembly code, based on the basic instruction set, we have to re-implement the lifting
functions using a specific syntax, defined into a library provided with TCE. Basically,
we threat the new instructions as functions to be called with some arguments, which
are the data to be provided to the input ports of the functional unit. The following
code contains the modified lifting functions:

/// Compute the first lifting step of the pi/8 rotation
///\param x1 first value
///\param x2 second value
static sample_t lift_pi8_1(sample_t x1, sample_t x2)
{

sample_t output;
_TCE_LIFT_PI8_1(x1, x2, output);

return output;
}

/// Compute the second lifting step of the pi/8 rotation
///\param x1 first value
///\param x2 second value
static sample_t lift_pi8_2(sample_t x1, sample_t x2)
{

sample_t output;
_TCE_LIFT_PI8_2(x1, x2, output);

return output;
}

/// Compute the first lifting step of the pi/16 rotation

14

Integrated Systems Architectures 15

///\param x1 first value
///\param x2 second value
static sample_t lift_pi16_1(sample_t x1, sample_t x2)
{

sample_t output;
_TCE_LIFT_PI16_1(x1, x2, output);

return output;
}

/// Compute the second lifting step of the pi/16 rotation
///\param x1 first value
///\param x2 second value
static sample_t lift_pi16_2(sample_t x1, sample_t x2)
{

sample_t output;
_TCE_LIFT_PI16_2(x1, x2, output);

return output;
}

/// Compute the first lifting step of the 3pi/16 rotation
///\param x1 first value
///\param x2 second value
static sample_t lift_3pi16_1(sample_t x1, sample_t x2)
{

sample_t output;
_TCE_LIFT_3PI16_1(x1, x2, output);

return output;
}

/// Compute the second lifting step of the 3pi/16 rotation
///\param x1 first value
///\param x2 second value
static sample_t lift_3pi16_2(sample_t x1, sample_t x2)
{

sample_t output;
_TCE_LIFT_3PI16_2(x1, x2, output);

return output;
}

Integrated Systems Architectures 16

At this point it is possible to perform the simulation to verify the performances of
the new architecture. The simulation report is the following:

cycles: 400

buses:

B1 92.5% (370 writes)
B2 56.5% (226 writes)

sockets:

lsu_i1 26.5% (106 writes)
lsu_o1 15.25% (61 writes)
lsu_i2 11.25% (45 writes)
RF_i1 34.25% (137 writes)
RF_o1 62.25% (249 writes)
gcu_i1 0.75% (3 writes)
gcu_i2 0.25% (1 writes)
gcu_o1 0.75% (3 writes)
ALU_i1 34.25% (137 writes)
ALU_i2 34.25% (137 writes)
ALU_o1 35% (140 writes)
LIFTER_i1 3.75% (15 writes)
LIFTER_i2 3.75% (15 writes)
LIFTER_o1 4.5% (18 writes)

operations executed in function units:

LSU:
LDW 57.5472% of FU total (61 executions)
STW 42.4528% of FU total (45 executions)
TOTAL 26.5% (106 triggers)

ALU:
ADD 82.4818% of FU total (113 executions)
SHL 5.83942% of FU total (8 executions)
SUB 11.6788% of FU total (16 executions)
TOTAL 34.25% (137 triggers)

LIFTER:
LIFT_PI8_1 40% of FU total (6 executions)
LIFT_PI8_2 20% of FU total (3 executions)
LIFT_PI16_1 13.3333% of FU total (2 executions)

Integrated Systems Architectures 17

LIFT_PI16_2 6.66667% of FU total (1 executions)
LIFT_3PI16_1 13.3333% of FU total (2 executions)
LIFT_3PI16_2 6.66667% of FU total (1 executions)
TOTAL 3.75% (15 triggers)

gcu:
JUMP 33.3333% of FU total (1 executions)
CALL 66.6667% of FU total (2 executions)
TOTAL 0.75% (3 triggers)

operations:

ADD 28.25% (113 executions)
CALL 0.5% (2 executions)
JUMP 0.25% (1 executions)
LDW 15.25% (61 executions)
LIFT_3PI16_1 0.5% (2 executions)
LIFT_3PI16_2 0.25% (1 executions)
LIFT_PI16_1 0.5% (2 executions)
LIFT_PI16_2 0.25% (1 executions)
LIFT_PI8_1 1.5% (6 executions)
LIFT_PI8_2 0.75% (3 executions)
SHL 2% (8 executions)
STW 11.25% (45 executions)
SUB 4% (16 executions)

FU port guard accesses:

register accesses:

RF:
0 91 reads, 0 guard reads, 5 writes
1 0 reads, 0 guard reads, 1 writes
2 27 reads, 0 guard reads, 27 writes
3 35 reads, 0 guard reads, 27 writes
4 32 reads, 0 guard reads, 28 writes
5 31 reads, 0 guard reads, 25 writes
6 15 reads, 0 guard reads, 8 writes
7 18 reads, 0 guard reads, 16 writes
TOTAL 8 registers used

BOOL:

Integrated Systems Architectures 18

TOTAL 0 registers used

As we can see the total number of operations has dramatically dropped thanks to
the new instructions. Now the total execution time is only 400 clock cycles, which
means 14 times faster than the previous architecture and 84 times faster than the initial
one.

CHAPTER 6

Functional Unit implementation

In order to be able to generate the VHDL code of the processor, we must provide an
implementation for our custom functional unit.
This implementation is composed of a package, which contains the constants repre-
senting the opcodes for each instruction that the functional unit is able to perform,
and an entity in which there is the actual implementation.

package lifter_opcodes is

constant LIFT_3PI16_1 : std_logic_vector(2 downto 0) := "000";
constant LIFT_3PI16_2 : std_logic_vector(2 downto 0) := "001";
constant LIFT_PI16_1 : std_logic_vector(2 downto 0) := "010";
constant LIFT_PI16_2 : std_logic_vector(2 downto 0) := "011";
constant LIFT_PI8_1 : std_logic_vector(2 downto 0) := "100";
constant LIFT_PI8_2 : std_logic_vector(2 downto 0) := "101";

end lifter_opcodes;

The entity must be compliant with a given interface stated by the TTA architecture.
There must be a generic parameter dataw, which will contain the bus width. For each
data input port there must be a load signal which will trigger the input flip-flop. One
of the input ports must be a trigger port, with a further input, the opcode.

entity lifter is
generic (dataw: integer := 32);

port (
t1data : in std_logic_vector(dataw-1 downto 0);
t1load : in std_logic;
t1opcode : in std_logic_vector(2 downto 0);

19

Integrated Systems Architectures 20

o1data : in std_logic_vector(dataw-1 downto 0);
o1load : in std_logic;

r1data : out std_logic_vector(dataw-1 downto 0);

clk : in std_logic;
rstx : in std_logic;
glock : in std_logic
);

end lifter;

The functional unit architecture is the following: there is a flip-flop on each input
port, triggered by the corresponding external signal, then, depending on the opcode,
one of the two input ports is selected as one operand for the multiplier. The other
operand mul_B is selected between several constants, one for each opcode. Part of the
process in charge of selecting the second operand of the multiplier is shown below.

case t1opcode is
when LIFT_PI8_1 =>

mul_B <= conv_std_logic_vector(51, dataw);
add_sub <= ’0’;

when LIFT_PI8_2 =>
mul_B <= conv_std_logic_vector(98, dataw);
add_sub <= ’1’;

when LIFT_PI16_1 =>
mul_B <= conv_std_logic_vector(25, dataw);
add_sub <= ’0’;

when LIFT_PI16_2 =>
mul_B <= conv_std_logic_vector(50, dataw);
add_sub <= ’1’;

when LIFT_3PI16_1 =>
mul_B <= conv_std_logic_vector(78, dataw);
add_sub <= ’0’;

when LIFT_3PI16_2 =>
mul_B <= conv_std_logic_vector(142, dataw);
add_sub <= ’1’;

Integrated Systems Architectures 21

when others =>
null;

end case;

The output of this multiplier mul_OUT is shifted by eight and sent as second
operand to an adder (add/sub). The shifting operation is performed in the pipeline
register, that is placed between the multiplier and the adder, to cut the critical path.
The eight least significant bits are discarded and the final result is stored in mul_reg.

pipe_mul_reg: process (clk, rstx)
begin -- process regs

if rstx = ’0’ then -- asynchronous reset (active low)
mul_reg <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if glock = ’0’ then

mul_reg <= mul_OUT(dataw-1+8 downto 8);
end if;

end if;
end process pipe_mul_reg;

add_B <= mul_reg;

The first operand of the adder add_A is the input port which was not selected as
an operand for the multiplier. The second operand add_B, coming from the multiplier,
will be added or subtracted to the first one depending on the opcode. In fact, in the
process used to select the right constant for the multiplier, we also set a control signal
add_sub, that will decide which kind of operation has to be executed.

proc_add: process(add_sub, add_A, add_B)
begin

if add_sub = ’0’ then
add_OUT <= add_A + add_B;

else
add_OUT <= add_A - add_B;

end if;
end process proc_add;

Then, the result will be sent to the output buffer r1reg, that is directly connected
to the output port r1data.
Before generating the processor, the functional unit implementation has to be added to
the Hardware Database, using the tool HDBEditor. Here we have to specify the name
of the module, the opcodes, the ports and the VHDL file. At this point the module
can be used in the processor generation.

CHAPTER 7

Generating the processor

Once the functional unit has been added to the Hardware Database, it is possible to
generate the VHDL implementation of the whole processor, ready to be synthesized.
This can be done using the tool ProGe (Processor Generator). It will take as input
the processor architecture in the adf format and a file in the idf format, generated by
ProDe, in which we have to select the implementation for each functional unit that is
present in the architecture.

22

CHAPTER 8

Logic Synthesis

Logic synthesis has been carried out using Design Compiler, the RTL Synthesis tool
by Synopsys.
As a preliminary step, it was necessary to copy in the working directory the synop-
sys_dcṡetup file, that is used for initializing design parameters and variables, declare
design libraries, and so on. The commands in this file are executed when Design Com-
piler is invoked.
The first command in the synthesis flow is analyze that reads the HDL source files and
checks for syntactical errors. For example:

analyze -f vhdl -lib WORK ../src/toplevel.vhdl

Then, the elaborate command is invoked and it is in charge to:

• Translate the design into a technology-independent design (GTECH), starting
from the intermediate files generated during analysis.

• Allow changing of parameter values (generics) defined in the source code.

• Replace the VHDL arithmetic operators in the code with DesignWare compo-
nents.

At this point, if the elaboration completed successfully, the design is represented in
GTECH format, which is an internal, equation-based, technology-independent design
format.
Before synthesizing the design with compile_ultra command the clock signal with a
period of 10 ns was generated with the following command:

create_clock -name CK -period 10.0 CK

Moreover, other parameters like clock uncertainty, input and output delay, output
load and the wire model were specified. After synthesis we have observed the following
results:

23

Integrated Systems Architectures 24

• Timing

• Area

• Power

8.1 Timing
TIMING ANALYSIS

Startpoint: fu_LIFTER/add_sub_reg
(rising edge-triggered flip-flop clocked by CLOCK)

Endpoint: fu_LIFTER/mul_reg_reg[31]
(rising edge-triggered flip-flop clocked by CLOCK)

Path Group: CLOCK
Path Type: max

Des/Clust/Port Wire Load Model Library
--
toplevel tsmc090_wl40 fast

Point Incr Path
--
clock CLOCK (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
fu_LIFTER/add_sub_reg/CK (EDFFX2) 0.00 0.00 r
fu_LIFTER/add_sub_reg/Q (EDFFX2) 0.15 0.15 f
fu_LIFTER/U202/Y (CLKINVX32) 0.23 0.38 r
fu_LIFTER/U15/Y (INVX18) 0.16 0.54 f
fu_LIFTER/U140/Y (AOI22X2) 0.19 0.73 r
fu_LIFTER/U197/Y (BUFX12) 0.23 0.96 r
.
.
.
fu_LIFTER/U203/Y (XOR2X1) 0.20 9.61 f
fu_LIFTER/U669/Y (MX2X1) 0.18 9.80 f
fu_LIFTER/mul_reg_reg[31]/D (DFFRQX2) 0.00 9.80 f
data arrival time 9.80

clock CLOCK (rise edge) 10.00 10.00
clock network delay (ideal) 0.00 10.00
clock uncertainty -0.07 9.93
fu_LIFTER/mul_reg_reg[31]/CK (DFFRQX2) 0.00 9.93 r
library setup time -0.03 9.90

Integrated Systems Architectures 25

data required time 9.90
--
data required time 9.90
data arrival time -9.80
--
slack (MET) 0.10

The delay report shows delay calculation in two sections: the first section for data
arrival time and the second for data required time.
The data arrival time is the time required for a signal to travel from a starting point
to an end point of a path.
The data required time is the maximum time a signal has for travelling that path.
The time difference between data required time and data arrival time is called slack or
timing margin of the path. If the slack is negative, there is a timing violation on that
path.
In our case the slack is equal to 0, which means that the maximum clock frequency
is 100 Mhz. However, it is important to highlight that during this phase we are not
considering parasitics.
The critical path is on the multiplier path, and goes from the output of the register
that selects the multiplier operand (add_sub_reg) to the input of the pipeline register,
that divides the adder and the multiplier blocks (mul_reg_reg). Only a portion of the
critical path is shown in figure 8.1.

Figure 8.1: Critical path

8.2 Area
AREA ANALYSIS

Integrated Systems Architectures 26

Number of ports: 242
Number of nets: 3598
Number of cells: 3345
Number of references: 145

Combinational area: 28476.604943
Noncombinational area: 15377.140808
Net Interconnect area: 3112682.750000

Total cell area: 43853.746094
Total area: 3156536.496094

--

The above report simply shows the total area of the design. It is the sum of three
components: combinational, noncombinational, and net interconnect area.
The area due to logic cells in the design is made by the combinational (basic logic gates
like ANDs, ORs, etc) and the noncombinational (registers) factors. The third factor
affecting the area (net interconnect area) is due to the wires connecting these cells.
It is the dominant value, since heavy routing is required to connect all functional units
of the processor. By simply looking at the Design Schematic, created by Design Vision,
it is practically impossible to distinguish the RTL blocks, since wires are the dominant
part of the view.

8.3 Power
POWER ANALYSIS
--
Cell Internal Power = 1.6800 mW (61%)
Net Switching Power = 1.0537 mW (39%)

Total Dynamic Power = 2.7337 mW (100%)

Cell Leakage Power = 123.4962 uW

--

The internal power is caused by the charging of internal loads as well as by the
short-circuit current between N and P transistors of a gate, when both are on. As we
can see from the report, it is the dominant component of the dynamic power, dissipated
any time the capacitive load of a net charges or discharges.

Integrated Systems Architectures 27

Dynamic power has been computed assuming a switching activity equal to 0.5, which
is a non realistic value, since some nodes could switch more frequently than others.

CHAPTER 9

Place and route

To perform the Place and Route we used Cadence SoC Encounter, the steps needed
are:

• Importing the design

• Floorplanning

• Power planning and routing

• Cell placing

• Clock tree synthesis

• Filler Placement

• Signal routing

• Timing analysis

• Design analysis and verification

Importing the design First we need to import the synthesized netlist generated
by Design Compiler; to do so we customized the configuration file specifying all the
needed files like the libraries and the same netlist.

Floorplanning Within this step the software set the area to be assigned to the
design, in our case it is set in the center of the chip with a margin with respect to the
die boundary.

28

Integrated Systems Architectures 29

Power planning and routing The power planning aim is to place the necessary
metal stripes to provide power to the entire chip. First two rings are added around the
chip boundary for VCC and GND, then some vertical stripes are placed in order to
reduce the path length of the current, and so the voltage drop along the power lines.
At this point the horizontal wires are placed to power the standard cells and complete
the power planning.

Cell placing Now the library cells will be placed according to the synthesized netlist.
Encounter will try to place these cells in the best possible way to limit the routing
congestion.
A screenshot of the cell placement is shown in figure 9.1.

Figure 9.1: Cell placement

Clock tree synthesis Clock tree synthesis (CTS) is the process of insertion of buffers
or inverters along the clock paths of the design, in order to achieve minimum skew or

Integrated Systems Architectures 30

balanced skew. The goal of CTS is to minimize the load and the delay of the clock
tree.
In the .ctstch file we specify a tree of three levels, where the first level uses CLKBUFX1
buffers (where X1 indicates that they are able to drive only one gate), the second level
uses CLKBUFX4 buffers, while the third one uses CLKBUFX8 buffer. As we go up
in the tree the load capacitance seen by buffers increases, so we need to increase also
their driving capability.
After clock synthesis all results are stored in the report file and a verilog file, with all
buffers that have been added to the design, is generated.

------------------------------Clock Tree Report-------------------------------
Nr. of Subtrees : 0
Nr. of Sinks : 946
Nr. of Buffer : 25
Nr. of Level (including gates) : 3
Max trig. edge delay at sink(R): rf_RF_reg_reg_6__6_/CK 330.3(ps)
Min trig. edge delay at sink(R): fu_LIFTER_mul_reg_reg_23_/CK 301.5(ps)

(Actual) (Required)
Rise Phase Delay : 301.5~330.3(ps) 0~10000(ps)
Fall Phase Delay : 341.5~371.1(ps) 0~10000(ps)
Trig. Edge Skew : 28.8(ps) 10000(ps)
Rise Skew : 28.8(ps)
Fall Skew : 29.6(ps)
Max. Rise Buffer Tran : 194.6(ps) 10000(ps)
Max. Fall Buffer Tran : 187.4(ps) 10000(ps)
Max. Rise Sink Tran : 134.5(ps) 10000(ps)
Max. Fall Sink Tran : 121.4(ps) 10000(ps)

***** NO Transition Time Violation *****

***** NO Capacitance Violation *****

25 buffers have been inserted with a rise skew of 28.8 ps and a fall skew of 29.6 ps.

• Rise skew is calculated based on rise edge at the clock root.

• Rise skew is calculated based on rise edge at the clock root.

• Fall skew is calculated based on fall edge at the clock root.

Integrated Systems Architectures 31

• Triggering edge Skew is calculated based on arrival times of active signals on
clock pins.

• Transition time is the time taken by the clock signal to make a transition from
20% to 80% of the maximum value.

The clock skew is not equal to 0 because paths are not perfectly balanced. However,
it is a small value with respect to the clock period.
Main causes of clock skew could be:

• unequal wire length;

• unequal buffer delay;

• unequal load;

• IR-drop.

Filler placement This step is required for technological reasons to guarantee conti-
nuity in N and P wells in each row. It consists of filling the holes on the die with filler
cells.

Signal routing This step is divided into two phases: the first phase is a sort of raw
routing, a planning of the wire position. The second phase is fine routing of the wires
which connect all the cells; here Encounter will try to find the best solution for the
wires positioning. A screenshot of the signal routing is shown in Fig.9.2.

Timing analysis To do the timing analysis we first have to specify the operating
conditions like temperature, power supply voltage and the process variations, then we
must extract the parasitics (resistance and capacitance) of each wire in our design.
The ExtractRC command returns two files .setload and .setres that are used to set
capacitance and resistance for each net respectively. They have to be included in the
.sdc file, that is used to fix timing constraints.

#/**
* Timing constraint file in SDC format
**/
set_wire_load_model -name tsmc090_wl40 -library fast
create_clock [get_ports clk] -name CLOCK -period 10 -waveform {0 5}
source mydct.setload
source mydct.setres

Now we are ready for the timing analysis, we load the timing constraints (used also
in the synthesis) and launch the analysis.

Integrated Systems Architectures 32

Figure 9.2: Signal routing

As we anticipated in the Logic Synthesis chapter, the maximum operating frequency,
found in that phase, is not a real value, since we were not considering resistance and
capacitance parasitic values for metal wires. Starting from the minimum declared
period (10 ns) we performed Timing Analysis and we found no violating paths.

*info: Report constrained paths
* Path type: max (data)
* Format: long
*** Found 0 violating paths ***

It means that the DCT can really be clocked at 100 Mhz.

Integrated Systems Architectures 33

Design analysis and verification Since there are no timing violations we can pro-
ceed with the design verification. It checks if there are floating wires and if there are
geometric issues related to the design rules, imposed by the technology.

Begin Summary ...

Cells : 0
SameNet : 0
Wiring : 0
Antenna : 0
Short : 0
Overlap : 0

End Summary

No DRC violations were found

Finally, the total number of gates is reported below.

Gate area 2.1168 um^2
Level 0 Module toplevel Gates = 20784
Cells = 5632
Area = 43997.0 um^2

APPENDIX A

lift.vhd

library ieee;
use ieee.std_logic_1164.all;

package lifter_opcodes is

constant LIFT_3PI16_1 : std_logic_vector(2 downto 0) := "000";
constant LIFT_3PI16_2 : std_logic_vector(2 downto 0) := "001";
constant LIFT_PI16_1 : std_logic_vector(2 downto 0) := "010";
constant LIFT_PI16_2 : std_logic_vector(2 downto 0) := "011";
constant LIFT_PI8_1 : std_logic_vector(2 downto 0) := "100";
constant LIFT_PI8_2 : std_logic_vector(2 downto 0) := "101";

end lifter_opcodes;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use work.lifter_opcodes.all;

entity lifter is

generic (dataw: integer := 32);

port (
t1data : in std_logic_vector(dataw-1 downto 0);
t1load : in std_logic;
t1opcode : in std_logic_vector(2 downto 0);

34

Integrated Systems Architectures 35

o1data : in std_logic_vector(dataw-1 downto 0);
o1load : in std_logic;

r1data : out std_logic_vector(dataw-1 downto 0);

clk : in std_logic;
rstx : in std_logic;
glock : in std_logic
);

end lifter;

architecture rtl of lifter is

signal t1reg : std_logic_vector(dataw-1 downto 0);
signal o1reg : std_logic_vector(dataw-1 downto 0);
signal r1reg : std_logic_vector(dataw-1 downto 0);

signal mul_A: std_logic_vector(dataw-1 downto 0);
signal mul_B: std_logic_vector(dataw-1 downto 0);
signal mul_OUT: std_logic_vector(2*dataw-1 downto 0);

signal mul_reg: std_logic_vector(dataw-1 downto 0);

signal add_A: std_logic_vector(dataw-1 downto 0);
signal add_B: std_logic_vector(dataw-1 downto 0);
signal add_OUT: std_logic_vector(dataw-1 downto 0);
signal add_sub: std_logic;

begin

regs_op1 : process (clk, rstx)
begin -- process regs

if rstx = ’0’ then -- asynchronous reset (active low)
t1reg <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if glock = ’0’ then

if t1load = ’1’ then
t1reg <= t1data;

case t1opcode is
when LIFT_PI8_1 =>

Integrated Systems Architectures 36

mul_B <= conv_std_logic_vector(51, dataw);
add_sub <= ’0’;

when LIFT_PI8_2 =>
mul_B <= conv_std_logic_vector(98, dataw);
add_sub <= ’1’;

when LIFT_PI16_1 =>
mul_B <= conv_std_logic_vector(25, dataw);
add_sub <= ’0’;

when LIFT_PI16_2 =>
mul_B <= conv_std_logic_vector(50, dataw);
add_sub <= ’1’;

when LIFT_3PI16_1 =>
mul_B <= conv_std_logic_vector(78, dataw);
add_sub <= ’0’;

when LIFT_3PI16_2 =>
mul_B <= conv_std_logic_vector(142, dataw);
add_sub <= ’1’;

when others =>
null;

end case;

end if;
end if;

end if;
end process regs_op1;

regs_op2: process (clk, rstx)
begin -- process regs

if rstx = ’0’ then -- asynchronous reset (active low)
o1reg <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if glock = ’0’ then

if o1load = ’1’ then
o1reg <= o1data;

end if;
end if;

Integrated Systems Architectures 37

end if;
end process regs_op2;

proc_mux: process(add_sub, t1reg, o1reg)
begin

if add_sub = ’0’ then
mul_A <= o1reg;
add_A <= t1reg;

else
mul_A <= t1reg;
add_A <= o1reg;

end if;
end process proc_mux;

mul_OUT <= mul_A * mul_B;

pipe_mul_reg: process (clk, rstx)
begin -- process regs

if rstx = ’0’ then -- asynchronous reset (active low)
mul_reg <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if glock = ’0’ then

mul_reg <= mul_OUT(dataw-1+8 downto 8);
end if;

end if;
end process pipe_mul_reg;

add_B <= mul_reg;

proc_add: process(add_sub, add_A, add_B)
begin

if add_sub = ’0’ then
add_OUT <= add_A + add_B;

else
add_OUT <= add_A - add_B;

end if;
end process proc_add;

Integrated Systems Architectures 38

output_reg: process (clk, rstx)
begin -- process regs

if rstx = ’0’ then -- asynchronous reset (active low)
r1reg <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if glock = ’0’ then

r1reg <= add_OUT;
end if;

end if;
end process output_reg;

r1data <= r1reg;

lift.cc

/**
* OSAL behavior definition file.
*/

#include "OSAL.hh"

OPERATION(LIFT_PI8_1)
TRIGGER
int x1 = INT(1);
int x2 = INT(2);
int result = 0;

result = x1 + ((x2*51) >> 8);

IO(3) = result;

END_TRIGGER
END_OPERATION(LIFT_PI8_1)

OPERATION(LIFT_PI8_2)
TRIGGER
int x1 = INT(1);
int x2 = INT(2);
int result = 0;

Integrated Systems Architectures 39

result = x2 - ((x1*98) >> 8);

IO(3) = result;

END_TRIGGER
END_OPERATION(LIFT_PI8_2)

OPERATION(LIFT_PI16_1)
TRIGGER
int x1 = INT(1);
int x2 = INT(2);
int result = 0;

result = x1 + ((x2*25) >> 8);

IO(3) = result;

END_TRIGGER
END_OPERATION(LIFT_PI16_1)

OPERATION(LIFT_PI16_2)
TRIGGER
int x1 = INT(1);
int x2 = INT(2);
int result = 0;

result = x2 - ((x1*50) >> 8);

IO(3) = result;

	Introduction
	Starting Point Architecture
	Algorithm Acceleration
	Creating the Custom Operations
	Custom operations in C code
	Functional Unit implementation
	Generating the processor
	Logic Synthesis
	Timing
	Area
	Power

	Place and route
	

